If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X+6=0
a = 1; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·1·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*1}=\frac{-6}{2} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*1}=\frac{-4}{2} =-2 $
| 4×(x+1)=12 | | X^2-15h-16=0 | | 2(4x-7)x2x=136 | | x²=7,84 | | H^2-15h-16=0 | | -4(x)=1/2x-14 | | (4x-7)x2x=136 | | 7y=20=3y | | 7y=20=3 | | 17x-16+4=-46 | | (X-42)+(x)=90 | | 3p+4p-6p-p+3p=9 | | 8r-2r-5r=8 | | 12+11f=10f | | –5(s–7)=12 | | 2y+31=73 | | 5v+v+3v-v=16 | | 2x+10+60=90 | | 3p^2+10p-13=4 | | 13+2x=31 | | 5x3^3x=60 | | 105x=180 | | 3x-12=78-2x | | T=-10n+8 | | 15^3x=60 | | 6(2k-3)=-48 | | 150x+900=2100 | | 2(1-x)=16-(2-x) | | 18y+3=15y | | 171=30-y | | 3p=18p+12 | | -5(-2y+9)=-25 |